Homework 1, part 1/2

Version as of Oct 6, 2024, a few typos and errors fixed

Due date for entire HW1 is Oct 20. Either paper or electronic submission is fine.

Each exercise is worth 1 point. Extra point for each reported error! — please use forum.
Total score for this part is #points/#total, so the maximum is 1 (more with extra credit)

We encourage you to use QuTiP in Python to do some of these exercises, at least to verify
your answers or just to explore the problem without having to do the math by hands.

Suggested Literature:
L. Susskind Theoretical Minimum book, Ch. 2; Ch. 3
Kay, Laflamme, Mosca Quantum Computing book, Ch 2.1-2.5; Ch 3.1, 3.4; Ch 4.1-4.2

A. Qubit states and their representation in the Bloch sphere.

The state of a qubit is usually parametrized using two angles, 6 and ¢:
0 N
|U) = cos §]O> + exp(i¢) sin 5\1), (1)

and can be represented as a point on a sphere with a unit radius. The "longitude” angle
varies from 0 to 7 and the latitude angle ¢ varies from 0 to 2x or from —7 to m. The angle
6 is measured with respect to the direction of the Z-axis which goes from the ”South pole”
to the ”North pole”. The angle ¢ is defined in the ”Equatorial plane” and measured with
respect to the X-axis (the direction of which can be chosen arbitrary). For points § = 0
we get |¥) = |0) (north pole) and for = m we get |¥) = |1) (south pole) irrespective of
the value of ¢.

Matriz form representation. In order to express states in the "matrix form”, we define
two-component column vectors

The corresponding dual vectors are obtained by taking the transpose

(0]
(1]

The qubit states |0) and |1) are orthogonal, because the corresponding vectors satisfy the
0
1
basis in the space of 2-component complex vectors. These two states are also normalized
to a unit length, that is (0|0) = (1]1) = 1. The basis formed by |0) and |1) is often called

(10)
(01)

orthogonality condition (0|1) = (1 0) - =1x0+0x1=0 and hence they form a



“computational basis”. Curiously, even though the states |0) and |1) are orthogonal, their
corresponding Bloch vectors are obviously parallel to each other (pointing in opposite di-
rections). There is a difference between the Bloch sphere space, which kind of reflects
our 3D world and the 2D complex vector space of qubit states, which is an abstraction
required to formulate the rules of quantum mechanics.

Irrelevance of the global phase-factor. We can multiply |¥) by exp(ia), a is any real
number, and this operation would not change the state. For example, —|0) is physically
no different from |0) (multiplying by exp(i7)). Or (1/v/2)]0) — (1/+/2)|1) is the same state
as (1/v/2)]1) — (1/v/2)]0). Or |0) +1|1) is the same state vector as |0) — |1). To summa-
rize, in order to find the Bloch sphere vector from a given quantum state, we should first
eliminate the global phase factor by making the probability in front of |0) a real number
and adjust the accordingly the phase of the amplitude in from of |1).

Exercise 1: Construct 2 x 2 matrix Z, the eigenvectors of which are |0) and |1) and
the corresponding eigenvalues are +1 and -1. That is Z|0) = +1/0) and Z[1) = —1][1).
Hint: calculate the "matrix elements” (0/2]0), (0|Z]1), ...

Exercise 2: Find the matrix for a linear operator X which turns |0) into |1) and
|1) into |0). It’s also a quantum NOT-gate.

Since states |0) and |1) form a basis, any other qubit state can be represented as their
superposition, as defined in Eq. (1). For example two other common states are:

+) = ?!0> + ?!U

N

Exercise 3: Mark the states |+) and |—) together with states |0) and |1) on the Bloch
sphere. Note, the superposition of "up” (the ket |0)) and "down” (the ket |1)) points
sideways!

Exercise 4: Show that states |[4+) and |—) also form a basis. Basis means any other
state can be expressed as a linear superposition of the basis states. What would be states
|0) and |1) in this new basis?

Exercise 5: Find the matrix for a linear operator X (in the computational basis),
the eigenvectors of which are |+) and |—) and eigenvalues are +1 and —1, respectively.



Exercise 6: Find out states X|0), X|[1), Z|+), and Z|-).

We can convert from the computational basis |0), |1) to the basis |+), |[-) AND back
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using the Hadamard operator, defined by the matrix H= A CHER] (in the computa-

tional basis). One can equivalently write H = Z/v2 4+ X /v/2.

Exercise 7: Apply H to states [0), |1), |[+), |-). Check that H? = I

There is yet another commonly used basis, this time (finally!) involving complex numbers:

) = 5[0+ 25 ]1)

=) = 5]0) — 1)

Exercise 8: Mark the states | +1), | — i) on the Bloch sphere with respect to the states

10), 1), 1), [=)-

We remind that a dual vector (¥| = |U)T is created by transposing a column into a

T
row AND complex-conjugating every entry. That is (1) = (1 —z').

Exercise 9: Write down the following vectors (as columns and rows), | +1), (+i|, | — ),

(=il.

Exercise 10: Find the matrix for a linear operator Y/, the eigenvalues of which are
+1 and —1, and the corresponding eigenvectors are | + i) and | — 7).

Exercise 11: Show that the pair of states | +4) and | — i) form a basis in the vec-
tor space of states of our qubit.

Exercise 12:  Find the matrix (in the computational basis) for an analog of the
Hadamard operator, which would convert basis states | + ¢) and | — 4) into |0) and |1)
and back. Hint: as always, apply the operator to two basis states and use the result to
compute the four matrix elements.

N.B. the operator to go one way must be the conjugate of the operator to go the other



way, but the two are not always equal.

Exercise 13: Same question as above but this time let’s convert between the basis

You now know the three pairs of most common qubit basis states, which are the eigenstates
(eigenvectors) of the three matrices (operators) X,Y, Z. They are called Pauli matrices
(operators). We will use the terms operators and matrices interchangeably, although it’s
important to keep in mind that the matrix is just a representation of the operator in a
given basis. Unless specified, our default basis is the computational one.

B. Quantum measurement rules

As you have surely noticed, there is an infinite number of possible qubit states, given
by the continuous choice of the two angles 6 and ¢ in Eq. (1). So where’s discretness
(quantumnes!) coming from? It comes from the act of measurement.

To formulate the rules for the measurement outcome we first must choose what is being
measured. In quantum mechanics, this means choosing an operator L representing some
observable related to the qubit (no reason for choosing L over other letters). The only
theoretical constraint on L is that it must be a hermitian operator, LT = L. We’ll get to
see why it is so a bit later.

10 v 0 0 -1
(with their matrices written in the computational basis). Consider also new operators,
obtained from the Pauli operators: X +Z, X £V, X +iY. Which one(s) cannot represent
an observable?

Exercise 14: Consider Pauli operators X = (O 1) Y = (O _Z) 7 = <1 0)

Rules of quantum measurement. Let’s imagine a qubit in an arbitrary state |¥) and
a measurement apparatus (a device) which somehow reads the value of a qubit observable
defined by a hermitian operator L. Building such a device is a problem for quantum
engineers, and we will touch on this topic later in the course. For now let’s just assume
that we have an instrument that can measure any hermitian operator L. Let’s also denote
eigenstates and eigenvalues of L as [¢;) and \; (j = 0,1). The reading on the instrument
will be either A\; or Ay, at random, and nothing else! The probability of getting A; is given
by [(¢;|¥)|?. Furthermore, immediately after the measurement, the qubit state instantly
changes (collapses) from |U) to |¢;). How weird are these rules? At least they are concise.

Consider a specific example of the measurement operator Z, the eigenstates of which are
|0) and |1) (our computational basis) and the eigenvalues are +1 and —1, respectively.
The qubit is prepared in state |W) given by Eq. 1. There are two options for the mea-
surement outcome: i) with a probability cos?(6/2) the reading shows +1 and the qubit
is prepared (initialized) in state |0) and ii) with a probability sin?(6/2) the reading is —1



and the qubit is prepared in state |1).

Repeating the measurement second time on the same just measured qubit would give
the same result as the first one. The randomness is gone! That’s because if the first
measurement collapses the qubit state into |0), the second measurement must yield +1
reading with probability 1 and the qubit state |0) remains unchanged. Likewise, if the
first measurement already collapsed the qubit to state |1), the second one will output —1
with probability 1. Randomness happens only during the very first measurement. The
observer might even miss this randomness in the first measurement outcome unless some-
one provides a second qubit prepared in exactly the same initial state |¥). In this case
the observer can notice that the outcome of the first measurement of the first qubit does
not necessarily match with that of the first measurement of the second qubit. By getting
N > 1 copies of the qubit in state |¥), one can measure the frequency of measurement
outcomes +1 and —1 and evaluate the probabilities cos?(6/2) and sin*(6/2).

What’s the meaning of measuring Z operator for a qubit? Imagine a qubit as some kind of
an arrow with a unit length in the real space. We call such a quantum arrow a ”spin-1/2
system” or just "spin”. Measuring the Z-operator is asking for the value of the projection
of the arrow onto Z-axis. Measuring a classical arrow would give a continuum of pro-
jection values, from +1 to —1. But in the quantum case the Z-projection can only take
discrete values +1 or —1. It cannot be zero! Before we make the measurement, not only
we don’t know what’s the Z-projection of the arrow, the arrow itself does not know it.
Each time the measurement of the Z-projection of our qubit (or spin) gives us the value
of +1 we know the qubit is now prepared in state |0) (spin is pointing along the 7 axis)
and each time the measurement value is —1 we know the qubit is now prepared in state
|1) (the spin is pointing against the Z-axis). We often say ”measure the qubit along
the Z-axis” or "measure the Z-projection” or ”measure the qubit in the com-
putational basis”, which are all equivalent to choosing the measurement operator
to be Z and applying the rules of quantum measurement formulated above.

Exercise 15: Consider many copies of a qubit prepared in state |[4+). We measure Z for
each qubit. What would be the mean value of the outcome? Same question for state |—).

Exercise 16: Consider the same experiment as in the exercise above but the qubit
state is now a general qubit state |U) given by Eq. (1). Plot the mean value of the
measurement, outcome as a function of . Is the answer somewhat consistent with the
interpretation of our qubit as a classical arrow oriented at an angle 6 with respect to
Z-axis?

Exercise 17: Show that the average measurement value for the Z-projection in the
previous exercise can be compactly written as (¥|Z|W). Hint: just multiply the three
matrices and check the answer.



Now let’s consider measurements of other observables of our qubit. We can perform
a measurement of Z and check that the reading is +1, in which case the qubit is guaran-
teed to be in state |1). What would we get if, following the initialization by measurement
to state |1), we now measure operator X? In the spin analogy, this is measuring the
spin’s X-projection. Following the quantum measurement rules, we recall that the eigen-
states of X are |[+) and |—) and the eigenvalues are +1 and —1, respectively. Therefore,
the reading on the measurement device would be +1 with probability |[(+[1)]*> = 1/2
and —1 with probability [(=|1)]* = 1/2. The mean value of the reading would be
[{(HDF < (1) + [(+HDFF x (=1) = (1]X[1) = 0.

Exercise 18: Plot (V| X|¥) as a function of the angles # and ¢. Compare it to the
previously calculated (¥|Z|¥). Do both quantities behave as X- and Z-projection of a
classical arrow with a unit length?

Exercise 19: Consider a qubit in state |0) and a measurement of Z and X. We know
that if we repeat each measurement many times (each time with a fresh qubit initialized
to state [0)), the mean value for Z would be 41 and the mean value for X would be 0,
that is (0|Z|) = +1, and (0|X]0) =0. Let’s calculate the variance of the measurement
outcome, that is (0]Z2|0) — ((0]Z]0))? and (0|X2|0). Variance is a measure of the degree
of randomness. Deterministic variables have zero variance.

Exercise 20: Suppose we have a qubit in state |4+) and measure operator Y (mea-
sure the spin’s Y-projection). What reading would we get after one measurement, and
what would be the mean value of the readings after many measurements (each time start-
ing with a fresh qubit in state |+))?

Exercise 21: Is it too much to ask to measure X and Z at the same time, that is
to learn both the Z-projection and the X-projection of our quantum arrow? Let’s find
out. Suppose you have a qubit prepared in state |0). Do a sequence of measurements
Z, Z, Z . You would get 1,1,1, etc. Now let’s take a fresh qubit in state |0) and do a
different measurement sequence X X X. You will get either 1,1,1,... or —1,—1,—1, ...
each sequence having a probability 50%. What do we get if 1nstead we alternate the
measurements Z , X , 7 , X , etc? Hint: a true random bit string generator!

Exercise 22: Now let’s ask the same question about the mean values of the pro-
jections X and Z. Let’s take a qubit in the state |¥) given by Eq. 1. This time we change
the measurement protocol. We take a fresh qubit in state |V) each time we measure



something. We first measure Z , next time we measure X , next time Z , then X , etc..
The average value of all X readings would be (U|X|¥) and the average value of all Z
would be (¥|Z|¥). Compare to averaging the outcome in the experimental protocol of
the previous exercise.

C. Unitary and Hermitian operators

In quantum mechanics we usually deal with two types of operators: Hermitian and Uni-
tary. A Hermitian operator H satisfies H = H. A unitary operator U satisfies UTU = I
(which is equivalent to U~ = UT).

Eigenvalues of a hermitian operator are real numbers and eigenvectors are orthogonal
and form a basis in the vector space in which the operator acts. This is just a linear
algebra fact that can be proved with a few lines of math. This is why physical observables
(the stuff that can be measured) must be represented by hermitian operators. The act
of measurement instantaneously collapses the state of a quantum system into one of the
eigenstates of the operator being measured. Any qubit state can be represented by a
superposition of all possible measurement outcome states, which makes sense. The story
with unitaty operators is that they preserve the vector’s length, and more generally, they
preserve the inner product of any two vectors. Unitary operators describe the evolution
of the state of a quantum system while it is not being measured.

Exercise 23: Check that any unitary operator U applied to a state |¥) in Eq. 1 creates
a state |¥') = ap|0) + aq|1) where apafy + anaf = 1 (and hence the new state can also be
represented as a vector in a Bloch sphere).

Exercise 24: Check that the Pauli operators X , Y, 7 are both hermitian and uni-
tary. Hence they can serve to represent physical observables (the projections of the spin
onto the three orthogonal axis). And they can also serve as evolution operators. This is
an interesting coincidence. Illustrate both properties of X , }A/, and Z using vectors |0),

|1>7 ’+>7 |_>7 ‘+i>7 |_Z>

Let’s capitalize a bit on the Dirac notations. Because eigenvectors of any Hermitian
operator H form a basis, we can write down this operator using its eigenvalues h; and the
"outer product” of the eigenvectors |h;). Here ¢ = 0,1 for a qubit.

H|hi) = hilh:),

H = Zall eigenstates h’l‘h’l> <h’l‘

It’s also useful to note a special case of this relation when H = I (identity), in which case
the eigenvector decomposition is called “completeness relation:

I = Zall eigenstates |h’l> <h’l|



We can use the above relations to find the matrices for the Pauli operators in the com-

putational basis |0) = é and |1) = (1) Indeed, Z = (+1)[0)(0] 4+ (—1)[1)(1]) =
10 00 1 0 .
(0 0) — (0 1) = (0 _1>. If eigenstates of the operator are not |0) and |1) we would

have two more matrix elements to work out.

Exercise 25: Repeat the steps above for finding the matrix for X -operator using
its eigenvectors |+) and eigenvalues +1.

Exercise 26: Do the same as above but for Y, using its eigenvectors | £ i) and eigen-
values £1.

Exercise 27: Use the representation of a Hermitian operator above to prove that

H" = Zall eigenstates h?|hl> <h'2 | :

Thus, to take a function f of a Hermitian matrix H, assuming the function has a conver-
gent power series, we simply need to find it’s eigenvalues h; and eigenvectors |h;). So, we
get a very-very useful relation which makes the matrix exponentiation a piece of cake:

FU) =32 )R (hil (2)

Exercise 28: Show that any unitary operator U (representAed by an N x N matrix) can
be written as U = exp(iaH ), where « is a real number and H is some hermitian operator
(also represented by an N x N) matrix.

Hint 1: Use Eq. 2 to find the matrix for U in the basis of eigenvectors of H (and using
eigenvalues of H).

Hint 2: Check that all eigenvalues A of any unitary operator must be such that A\* =1,
that is A = exp(i«), where « is some real number.

D. Rotating the qubit state on the Bloch sphere

We have seen that operator Z is hermitian (and unitary), so operator exp(—iaZ/2) must
also be a unitary (the factor 1/2 is there for some convenience later). What does this
unitary do to the qubit state?

Using matrix exponentiation, we can show that exp(—iaZ/2) = I cosa/2 —iZ sina/2 =
exp(—ia/2) 0 B . 1 0 : : .

( 0 explia/2)) = exp(—ia/2) 0 explia))’ Applying this matrix to the

state |¥) in Eq. 1 we get exp(—iaZ/2)|¥) = exp(—ia/2)(cos6/2|0) + sinf/2exp(i¢ +



i)l 1)) So, operator exp(—ia/QZ) rotates the qubit state in the XY -plane by an angle a.

A much better trick to find out what a given operator does is to apply this operator to a
pair of basis states. In case of Z-related operator, the easiest basis pair is |0) and |1):

exp(—ic/22)|0) = exp(—ic/2)|0)
exp(—ia/22)|1) = exp(+ia/2)[1)

Since only the phase difference between |0) and |1) matters, the effect of the operator
is equivalent to doing nothing to |0) and multiplying |1) by exp(ia).

Exercise 29: Show that exp(—iaX/2) is a rotation of the Bloch vector by an an-
gle a around X-axis.

Exercise 30: Show that exp(—iaY/2) is a rotation of the Bloch vector by an an-
gle a around Y-axis.

Exercise 31: Show that a general qubit state |¥) given by Eq. 1 can be obtain by
first rotating |0} by angle # around Y axis and then rotating by angle ¢ around Z-axis:
|W) = exp(—ipZ/2) exp(—ifY /2)|0).

Exercise 32: Is the order of rotations important in the previous exercise?

Exercise 33:  Now let’s try a slightly more complicated rotation. Clearly, M =
(X 4+ Z)/v/2 is a hermitian operator, so we can define a rotation exp(—iaM/2). Fig-
ure out what it does.

Hint: one way to approach this exercise is to figure out eigenvectors of M and find the
matrix exponent this way.

A ~

Exercise 34: Based on the previous two exercises, is it true that exp(—ia(X + Z)) =
exp(—iaX) x exp(—iaZ)?

Exercise 35: Consider another unitary operator exp(—iaM /2), where M = (X +
Y)/v/2? What kind of rotation on the Bloch sphere is it?



E. Qubit state tomography

Exercise 36: Suppose we have a qubit in a general state |¥) given by Eq. (1) and we
want to measure the parameters 6 and ¢. How might we do this? Clearly, if we only
have one copy of such a qubit we would only get 1’s or -1’s no matter which projection
we measure. However, if we have many copies, we can measure mean values of (U|X|0)
and (U|Z|T). Write down the values of § and ¢ in terms of those mean values.

Exercise 37: Suppose now that we only have an instrument to measure Z and not
X. Can we still reconstruct the qubit state? All we need to do is to find a rotation which
would turn |+) into |0) and |—) into |1). If we do this rotation right before the act of
measurement of Z, the getting |0) means before the rotation we were |+) and getting |1)
means before the rotation we were |—). So, a proper rotation followed by Z measurement
is equivalent to X measurement. Come up with a specific protocol for measuring <\I/]X |U)
using an instrument that can only measures Z.
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